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Self-directed walk: a Monte Carlo study in two dimensions 
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Abstract. A new type of indefinitely growing self-avoiding walk is introduced in which the 
walker is not allowed to perform a step pointing towards a site he has already visited. This 
restriction leads to a walk which is a succession of long directed parts. A Monte Carlo 
study on the square lattice suggests that the radius of gyration exponent U =  1 in two 
dimensions. The enhancement factor exponent y = 1 in all dimensions. A self-consistent 
method gives v = 1 when 1 4 and Y = f above d, = 4, the 
upper critical dimension. 

d 2, v = 2/d  when 2 c d 

1. Introduction 

After a long period devoted to the study of the equilibium properties of long polymer 
chains on the self-avoiding walk model (de Gennes 1979), the field of growing random 
walks is now extensively explored (see Lyklema (1986) for a review). The interest in 
such problems originates in the work on the true self-avoiding walk (Amit et a1 1983) 
in which the jump probability towards a given site depends on the number of times 
this site has already been visited. This walk grows for ever (kinetic walk) but is not 
truly self-avoiding. Among irreversible self-avoiding walks one may mention the 
indefinitely growing self-avoiding walk (Kremer and Lyklema 1985) which is self- 
avoiding and truly kinetic. A given site is never visited twice and cages are avoided 
so that the walk never terminates. This walk has been generalised in the Laplacian 
random walk (Lyklema and Evertsz 1985) where the jump probability is governed by 
a potential qb which is a solution of the discretised Laplace equation. More recently, 
we have studied the linear diffusion-limited aggregation (Debierre and Turban 1986) 
in which aggregates are grown following the rules of Witten and  Sander (1981) with 
the restriction that the growth goes on near to the last occupied site only. In this way 
chains are generated which may also be considered as kinetically growing self-avoiding 
walks. 

In the present paper, we introduce a new type of growing random walk, the 
self-directed walk (SDW), in which new steps are allowed when they are directed 
towards an  open path, i.e. in a lattice direction where no site has been already visited. 
The probability of an allowed step i is then (figure 1) 

p ,  = l /number of open paths. (1.1) 
With these rules the walk is truly kinetic, self-avoiding and built u p  of long self-directed 
parts in two dimensions (figure 2 ) .  
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Figure 1. Construction of the self-directed walk: a new step is allowed when it is not 
directed towards an occupied site. The step probabilities p ,  are given for the first steps. 
When the walker is at X, Y after a downward step, a jump to the right is forbidden as 
long as Y4 S Y and X, > X .  A jump to the left would be forbidden if Y, s Y and X, < X. 

't 

N-500 

Figure 2. Self-directed walks grown on the square lattice with N = 500, 1000, 1500 
2000 steps. The starting point is indicated by a circle. 

and 

The paper is organised as follows: in § 2 we present the Monte Carlo procedure 
which is used to grow the SDW; the numerical results are given in § 3 and discussed 
in 04. 

2. The Monte Carlo procedure 

The walks are grown on the square lattice using a Monte Carlo method. At each step 
N, the following radii are stored: 

(2.1) 

(2.2) 

Rz( N )  = ( rN - ro)2 = r k  
R ; ( N )  = ( I /N)  C rf 

j 

(2.3) 
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Re is the end-to-end radius, R, an averaged end-to-end radius and R, the radius of 
gyration of the walk. The calculations have been done in assembly language on 8088 
and 8087 microprocessors. 

The step direction is chosen at random, using a rapid shift-register random number 
generator (Kirkpatrick and Stoll 1981), from among the three possible ones since a 
backstep is forbidden. A step in the forward direction is automatically allowed. When 
there is a turn, in order to see whether the new step is allowed, one need only compare 
the position of the walker to the coordinates of one of the four corners on a convex 
open polygon drawn around the walk (figure 1). This procedure spares a lot of computer 
time since it avoids the examination of the preceding steps but it cannot be used in 
higher dimensions. The polygon may be modified at each new turn of the walk. 

Typical SDW generated in this way are displayed in figure 2 for increasing numbers 
of steps ( N  = 500, 1000, 1500, 2000). It is clear in this figure that the walks are built 
up of successive directed parts. Walks of up to 1500 steps were generated to obtain 
averaged values of the radii R , ( N )  (a = e, a, g). Averages were taken over 16 500 
samples for N C 500,6500 samples for 500 < N C 1000 and 3000 samples for N > 1000. 

. . *  
,* 1 1 I 1 , , , I , , , ,  

3. Numerical results 

The averaged radii are expected to grow with N like ( R t (  N ) )  - N*”(cy = e, a, g) for 
large N values. This is verified in figure 3 where 4 In( R2( N ) )  is plotted against In( N ) .  
The asymptotic behaviour sets in rather slowly only when N is greater than 150-200 
steps. 

InN 

Figure 3. Plot of f I n ( R i (  N ) )  against In( N )  (a = e ,  a, g). The asymptotic behaviour sets 
in slowly for N - 150-200. The slope of the linear part gives an exponent v near to 1 .  
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The critical exponent v may be estimated through a scaling analysis of the data 
(Botet et a1 1984): 

Y N , M  = t  ln((R2(N)>/(R2(M))) / ln(N/M).  (3.1) 

With exact averages the best convergence is generally obtained when M = N + 1 
(Derrida and de Skze 1982). This is not true for Monte Carlo data due to the statistical 
fluctuations. Better results are then obtained with larger M - N values. Following 
Lyklema (1986) we use the following estimate: 

v( N )  = f In((R2( N +  i ) ) / ( R 2 (  N - i)))/ln[( N + i ) / ( N  - i ) ]  (3.2) 

where i is chosen in order to obtain a smooth variation with 1/ N. Large i values are 
needed for v , (N)  since the fluctuations are strong in this case (figure 4). For v , (N)  
and v , (N) ,  the fluctuations are much weaker and no marked evolution with i is 
observed for i varying between 1 and 20. The results for v,( N ) ,  v,( N )  and vg( N )  are 
reported in figure 5 against 1/ N with i = 10. 

Assuming a power law correction to scaling, the mean-square radius is given by 

( R 2 (  N ) )  = AN2"(  1 + BN-*+. . .) 

Y ( N ) =  Y - ~ A B N - ~ + .  . . . 

(3.3) 

which together with equation (3.2) leads to 

(3.4) 

The exponent Y may be obtained through a least-squares fit of v ( N )  against N-*. 
This has been done for the three radii in the asymptotic regime ( N  = 200-1500) with 

v, IN1 

1 = 2 0  
1.05  - 
0.95 - 
1 . 0 0  - ---~********..*.*. . . 

1 . 0 0  - - * . * * e * * * * * * . * . * *  . 10 1 .05  - 
0.95 - 

1 ; ., ;: : $k.H....Lu--.-.....**** * . * * * * .  0.95 - 

0.01 0.004 0.0b6 0.008 0.002 0 

-*.**e******.. 10 x . . 0.95 I 

l/N 

Figure4. Plot of v,( N ) ,  critical exponent of the end-to-end radius, estimated using equation 
(3.2) with i = 1 ,  10 and 20. The effect of the statistical fluctuations is reduced by increasing 
1. 
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Figure 5. Plots of ve( N),  v,( N )  and v9( N )  against 1/ N with I = 10. The extrapolated 
values are given in equations (3.5), (3.6) and ( 3 . 7 )  in the text. 

U = e  .................... 

.................. 

.+...U 
9 t .................. 0.012 

0 .010  

0,008 1 
I t I I I 

0 0.001 0.002 0.003 0.004 0 
1 I N  

05 

Figure 6. Plots of N - 2 ' o ( R : ( N ) )  against 1 / N  (a = e ,  a , g ) .  The extrapolated values are 
the amplitudes A given in equations (3 .8) ,  (3.9) and (3.10) in the text. 
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the following results for the extrapolated values: 

v,= 1.014*0.03 Ae = 1.7 (3.5)  
v,= 1.019i0.02 A, = 1.2 

v g =  1.009*00.01 Ag = 1.0. 

When the fit is done keeping only the last 1000 steps, v, and v, both decrease (v, = 1.014, 
v, = 1.002) but it is not very sensitive to the choice of A. 

A least-squares fit of N-*”(R*(  N ) )  against N-* (figure 6) with N = 200-1000 gives 
the following amplitudes: 

A, = 0.095 * 0.001 A, = 1.9 (3.8)  

A, = 0.0290 i 0.0001 A, = 1.2 (3.9) 

A, = 0.009 90 * 0.000 05 A , =  1 . 1 .  (3.10) 

An analytic correction to scaling of order N - ’  is expected and the analysis should 
give either A = 1 or A < 1 when the leading term is non-analytic. The values obtained 
for A, are clearly not reliable; this is probably due to the large fluctuations observed 
with the end-to-end radius. The errors in A, and A, are smaller. 

4. Discussion 

For large N values, the partition function Z ( N )  behaves like (de Gennes 1979) 

Z ( N ) a q N N Y - ’  (4.1) 
where NY-’  is the enhancement factor. For indefinitely growing self-avoiding walks, 
a simple argument (Kremer and Lyklema 1985) may be used to obtain exact values 
for y and q in all dimensions. 

Let P{rN} =FIE, p ,  be the probability of a walk of N steps with a configuration 
{rN}; since the SDW never stops, the partition function 

Z ( N ) =  c P{rN}=l (4.2) 
{ r,v 1 

where each walk is weighted by its probability P. Using equation (4.1) one obtains 
y = 1 and q = 1 .  The generating function (or susceptibility) is given by 

K - K -  
G ( K ) = C Z ( N ) K N  a ‘ ( K , - K ) - Y .  

N 
(4.3) 

With Z ( N )  = 1,  equation (4.3) leads to y = 1,  K ,  = q-’ = 1 .  
q in equation (4.1) is not the connective constant of the SDW since in Z ( N )  each 

walk is weighted by its probability P which is generally not the same for all the N-step 
walks (see figure 1 ) .  It follows that Z ( N )  no longer gives the number of walks of N 
steps as in the self-avoiding walk where the weight, which is the same for all the 
walks, may be taken to be unity. 

On a Cayley tree with coordination number z each step of the SDW is done in a 
new lattice direction in a space of infinite dimension. Each step has a probability 
p i  = ( z  - 1 ) - ’  and the ( z  - l ) N  walks of N steps have the same weight P{ rN} = ( z  - l ) - N  
so that we recover Z(  N )  = 1; the contribution of the connective constant, which is 
z - 1 in this case, is compensated by the weight factor. 
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Since on a Cayley tree with d =cc the SDW is also a self-avoiding walk, one obtains 
y = 1 and Y = 4 above the upper critical dimension d, of the SDW. 

A walk cannot be more extended than a line; as a consequence one obviously has 
vs 1. The numerical results of 0 3 suggest that v = 1 for the SDW in two dimensions. 
This conjecture is supported by the following self-consistent calculation of v for all d 
(see Pietronero 1983 for a similar treatment of the true self-avoiding walk). 

Let us consider the radial motion of a random walker with asymmetric jump 
probabilities. After N steps, the walker is at a distance R from the origin 0. Let pout 
and pin be the probabilities for a jump outside or inside the d-dimensional sphere of 
radius R (figure 7 ) .  When AN steps are added to the walk, R is changed by 

AR - SPAN (4.4) 
where Sp =po,,-pin. In the SDW 6p will be proportional to the probability of having 
at least one visited site inside the sphere on the line M M '  in the new step direction. 
This probability will be given by the density p , ( R )  of the projection of the walk on a 
( d  - 1)-dimensional surface & - I  which is orthogonal to the jump direction. If D = 1/ Y 
is the fractal dimension of the walk, the dimension of the projection D, is given by 
(Mandelbrot 1982) 

D,=min(D, d -1)  (4.5) 
and we obtain 

Figure 7. When the walker is at M ,  at a distance R from the origin 0, the asymmetry S p  
in the jump  probabilities pout  and p ,"  outside or inside the d-dimensional sphere of radius 
R is proportional to the density p , ( R )  of the projection of the walk on a surface S d - ,  
which is orthogonal to the jump  direction M M ' .  
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and 

S p -  N o  ( D Z  d - 1). (4.7) 

AR - N " - ' A N  (4.8) 

AN ( I / v s  d - 1) (4.9) 

When A N  steps are added to an N-step walk, the radius R a N u  is changed by 

and according to equations (4.4), (4.6) and (4.7) 
A R  - ~ l b ~ ( d - 1 )  

AR - N'AN ( I /  v d - 1). (4.10) 

Equation (4.9) remains valid as long as AR is larger than the Gaussian contribution 
AR, which is superposed to the biased motion 

A R g -  N- ' / 'AN (4.1 1) 

so that we have three cases to consider: 
(a) -$> 1 - v ( d  - 1): then equations (4.8) and (4.1 1) give v = and the inequality 

gives the upper critical dimension. The walk is Gaussian when d > d ,  = 4. 
(b) d < 4 ;  l / v s d - l :  equations (4.8) and (4.9) lead to v = 2 / d  and the last 

inequality gives a lower critical dimension d ,  = 2  at and below which the walk is 
cojmpletely directed ( v = 1). 

(c) 1 s d S 2: then equations (4.8) and (4.10) give v = 1. 
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